Bridges Blog logo

Do you like what you are reading? Be sure to follow us on Twitter & Facebook!

  • Home
    Home This is where you can find all the blog posts throughout the site.
  • Categories
    Categories Displays a list of categories from this blog.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Bloggers
    Bloggers Search for your favorite blogger from this site.
  • Team Blogs
    Team Blogs Find your favorite team blogs here.
  • Login
    Login Login form


Barely two weeks ago – in mid-April – STEMCELL Technologies of Vancouver, British Columbia, Canada, announced its new partnership with the Institute of Molecular Biotechnology (IMBA) in Vienna, Austria. Their collaboration will develop products for researchers who use “cerebral organoid cultures.” From a business standpoint, the international agreement sounds promising for both organizations. But what is an “organoid culture” anyway? And why are these little blobs of brain tissue so fascinating to researchers in science and medicine?

Hits: 4206
0


Funded by Qualcomm Technologies, Inc. and the Austrian Federal Ministry of Science, Research and Economy, the team wants to enable computers to orientate themselves in a non-standard environment.

If you want to orientate yourself spatially, you have to perceive your environment and interpret what you perceive. This applies equally to robots as well as all other animate beings. Machines can see thanks to the latest camera technology and computer-controlled image-recognition methods which describe the environment in a standardised way by means of two-dimensional images. The right interpretation of what is seen on a two-dimensional level, however, leaves a lot to be desired...

Hits: 1033
0

Algorithm does not work intuitive – just as quantum physics

Quantum physics is counterintuitive. Many of the phenomena in the quantum world do not have a classical analog: In the quantum world, a coin is not either heads or tails – but can have both properties at the same time. For a better understanding of such phenomena, laboratory experiments are indispensable. Quantum physicist Mario Krenn and his colleagues in the group of Anton Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian Academy of Sciences have developed an algorithm which designs new useful quantum experiments. As the computer does not rely on human intuition, it finds novel unfamiliar solutions. The research has just been published in the journal Physical Review Letters.

The idea was developed when the physicists wanted to create new quantum states in the laboratory, but were unable to conceive of methods to do so. “After many unsuccessful attempts to come up with an experimental implementation, we came to the conclusion that our intuition about these phenomena seems to be wrong. We realized that in the end we were just trying random arrangements of quantum building blocks. And that is what a computer can do as well – but thousands of times faster”, explains Mario Krenn, PhD student in Anton Zeilinger’s group and first author research.

Hits: 1316
0